20 Virtual Annual Scientific Meeting 15-18 February

Retrospective Audit of the Management of Ovarian Torsion in a Tertiary Hospital Over a Decade

Soh PQ1, Cheng C1,2, Reddington C1, Dior U1,3, Healey M1,2

1. The Royal Women's Hospital, Parkville, Victoria 2. The University of Melbourne, Department of O&G, Victoria 3. Hadassah Medical Center, Jerusalem, Israel

Introduction:

Management of ovarian torsion ranges from de-torsion to oophorectomy and is dependent on various factors [1]. Oophorectomy can have significant implications for fertility and general health, thus requires careful consideration [2]. This study reviewed the management of ovarian torsion at a tertiary hospital over a 10 year period.

Methods:

- Patients who underwent surgical management for acute ovarian torsion at a tertiary hospital in Victoria, Australia, were reviewed, from January 2008 to June 2018
- We reported rates and predictors of oophorectomy and ovarian ischaemia and current practices in oophoropexy.

Results:

- 159 patients were included.
- The rate of oophorectomy was 47% and did not change significantly over the 10 year timeframe when stratified annually (p=0.31).
- Only age (aOR 1.1, 95% CI 1.04, 1.16) and transfer from another hospital (aOR 2.33, 95% CI 0.99, 5.47) were significant factors for predicting oophorectomy in multivariate analysis.
- Although nulliparity was significantly lower in the oophorectomy group, it was not a significant predictor for oophorectomy after adjustment.
- Of those with oophorectomy, 57% had partial or complete ischaemia confirmed histologically.
- On modelling for prediction of ischaemia on histology, the 3 factors retained in the model were CRP, adnexal size and transfer from another hospital.
- Of the patients who had ovarian preservation, 24% had an oophoropexy. The site and suture material used during oophoropexy varied between cases.

Discussion:

- The oophorectomy rate of 47% in this audit is comparable to reported rates in current literature which varies from 35% to 80% [3, 4, 5].
- With increasing evidence to support ongoing ovarian function even in cases where ischaemia is histologically confirmed, this rate could be lowered further [6, 7].
- Future research should focus on evaluation of ovarian function after conservative management and methods to prevent recurrent torsion including the different methods of oophoropexy.

References

- Houry D et al (2001) Ovarian torsion: a fifteen-year review. Ann Emerg Med 38: 156-159
- 2. Parker WH et al. Ovarian conservation at the time of hy sterectomy and longterm health outcomes in the nurses' health study. ObstetGy necol 2009; 113: 1027-37.

 3. Mandelbaum RS et al. (2020) Conservative surgery for ovarian torsion in young
- women: perioperative complications and nationaltrends. BJOG 2020; https://rwhezproxy.ssg.org.au:3419/10.1111/1471-0528.16179.
- 4. Zweizig S, Perron J, Grubb D, Mishell DR Jr. Conservative management of adnexal torsion. Am J Obstet Gynecol 1993;**168**(6 Pt 1):1791–5
- 5. McGovern PG, Noah R, Koenigsberg R, Little AB. Adnexal torsion and pulmonary embolism: case report and review of the literature. Obstet Gynecol Surv 1999;54:601
- 6. As four V et al. (2015) Evaluating ovarian preservation after ovarian torsion using the ovarian preservation score and tissue necrosis score. Clin Obstet Gynecol Reprod Med, 2015. Volume 1(2): 34-39
- 7. Taskin O et al. (1998) The effects of twisted ischaemic adnexa managed by detorsion on ovarian viability and histology: An ischaemia-reperfusion rodent model. Human Reproduction. 13. 10.1093/humrep/13.10.2823.

Variable	Oophorectomy (N=75)	Ovarian preservation (N=84)	p-value
Age, mean (SD) N=159	36 (11)	30 (7)	<0.001
Nulliparity, % (n), N=159	55% (41)	74% (62)	0.013
White cell count, 10^9/L, mean (SD) N=155	11.7 (4)	10.3 (3)	0.014
Ovary size in mm, mean (SD) N=94	83 (37)	70 (24)	0.044
Transfer from other hospital, % (n), N=159	57% (43)	37% (31)	0.011
Time from presentation to surgery in hours, mean (SD) N=153	24 (27)	12 (11)	<0.001
Operation time in minutes, mean (SD) N=159	81 (30)	59 (23)	<0.001
Oophoropexy performed, % (n), N=159 None Unilateral Bilateral	95% (71) 5% (4) 0% (0)	76% (64) 19% (16) 5% (4)	0.004
Consultant present, n (%) N=159	93% (70)	98% (82)	0.256
Consultant RANZCOG/AGES Level N=152*			0.239
Level 3 Level 4	3% (2) 17% (12)	0% (0) 26% (21)	
Level 5 Level 6	34% (24) 46% (32)	37% (30) 38% (31)	

^{*}unknown RANZCOG/AGES level for 7 consultants
Total number for each variable varied due to missing data